

How important is the strange quark sea ($s\overline{s}$ pairs) in determining the electromagnetic (G^{P}_{E} , G^{P}_{M}) properties of the nucleon?

After 22 years of this line of inquiry, what is the status?

* Work partially supported by the National Science Foundation

Seminal Papers/Proposals for Vector Strange Form Factors

May 1988: Kaplan/Manohar, NPB310 (1988) 527: motivated by EMC strange spin content and πN sigma term - suggested elastic neutral current scattering experiments as probe of "strangeness" of the proton

STRANGE MATRIX ELEMENTS IN THE PROTON FROM NEUTRAL-CURRENT EXPERIMENTS

David B. KAPLAN¹

Department of Physics, Harvard University, Cambridge, MA 02138, USA

Aneesh MANOHAR²

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 19 May 1988

Recent results from EMC suggest a nonzero value for $\langle p | \bar{s} \gamma_{\mu} \gamma_{5} s | p \rangle$; measurements of the pion-nucleon sigma term suggest a large value for $\langle p | \bar{s} s | p \rangle$. In this paper we discuss how elastic neutral-current scattering experiments may be used to extract more information about the "strangeness" of the proton. In particular, one can measure the form factor F_{2} for $\langle p | \bar{s} \gamma_{\mu} s | p \rangle$, as well as the G_{1} form factor for $\langle p | \bar{s} \gamma_{\mu} \gamma_{5} s | p \rangle$. We also show how nonzero strange matrix elements in the proton can be reconciled with the successes of the nonrelativistic quark model.

Volume 219, number 2,3	PHYSICS LETTERS B	16 March 1989 PH	YSICAL REVIEW D	VOLUME 39, NUMBER 11	1 JUNE 1989		
SENSITIVITY OF POL TO THE ANOMALOUS	ARIZED ELASTIC ELECTRON-PROTON S BARYON NUMBER MAGNETIC MOME	SCATTERING ENT	Strange-quark vector currents and parity-violating electron scattering from the nucleon and from nuclei				
R.D. McKEOWN W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125, USA			D. H. Beck W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (Received 3 January 1989)				
Received 20 August 1988 The anomalous baryon num It is shown that this quantity protons at low momentum tra	iber magnetic moment may be a useful quantity in constr can be determined quite precisely in the elastic scatte insfer.	aining various models of nucleon structuri ring of polarized electrons by unpolarize	Measurements of preted in a manner ments. In this pape and their manifestat that strange-quark electron scattering f effects in on-going p contributions might	the processes $p(\pi, \pi)$, $p(v, v)/p(\bar{v}, \bar{v})$, and deep-inelastic $\bar{p}(\bar{\mu}, \mu')$ can be inter which requires a significant strange-quark contribution to proton matrix el- er some implications of strange-quark contributions to proton vector curren ion in parity-violating electron-scattering experiments are examined. It is four currents of plausible magnitude significantly affect the parity-violating elast from the nucleon in certain kinematic regimes. It is also shown that, while the parity-violating experiments on ⁹ Be and ¹² C are small, significant strange-quar- be expected in experiments with nuclear targets at higher-momentum transfer.	r- e- ts d d ic k k		

1989: McKeown and Beck point out that parity-violating electron scattering from the proton can be used to measure strange quark vector currents - "the strange form factors"

1990: SAMPLE experiment proposed at MIT-Bates

1991: GO and HAPPEx experiments proposed at Jefferson Lab

~1995: A4 experiment launched at MAMI

Strange Vector Form Factors - G_{E}^{s} and G_{M}^{s} $< N | s \gamma^{\mu} s | N > \rightarrow G_{E}^{s} G_{M}^{s}$

The strange vector form factors measure the contribution of the strange quark sea to the electromagnetic properties of the nucleon.

 $G_E^s(Q^2)$ Strange electric form factor: measures the contribution of the strange quark sea to the nucleon's spatial charge distribution.

 $G_M^s(Q^2)$ Strange magnetic form factor: measures the contribution of the strange quark sea to the nucleon's spatial magnetization distribution.

$$G_{E,M}^{\gamma,p} = \frac{2}{3} G_{E,M}^{u,p} - \frac{1}{3} G_{E,M}^{d,p} - \frac{1}{3} G_{E,M}^{s,p}$$
$$G_{E,M}^{\gamma,n} = \frac{2}{3} G_{E,M}^{u,n} - \frac{1}{3} G_{E,M}^{d,n} - \frac{1}{3} G_{E,M}^{s,n}$$

Consider strange electric form factor: $G_{E}^{s}(Q^{2}=0) = 0$ since no net strangeness

Non-zero value of G^s_E requires a process to cause spatial separation of s and \overline{s} "kaon cloud"

Theoretical Approaches to Strange Form Factors

Much theoretical effort has gone into strange form factors in past 22 years.

Models - a non-exhaustive list:

kaon loops, vector dominance, Skyrme model, chiral quark model, dispersion relations, NJL model, quark-meson coupling model, chiral bag model, HBChPT, chiral hyperbag, QCD equalities, ...

QCD Lattice calculations -

- Dong, Liu, Williams PRD **58**(1998)074504
- Lewis, Wilcox, Woloshyn PRD 67(2003)013003
- Leinweber, Thomas, Young et al. PRL 94(2005) 212001; PRL 97 (2006) 022001
- Wang, Leinweber, Thomas, Young PRC 79(2009) 065202
- Doi, Liu et al., PRD 80(2009)094503

Flavor decomposition of nucleon E/M $: G_{E,M}^{\gamma,p} = \frac{2}{3} G_{E,M}^{u,p} - \frac{1}{3} G_{E,M}^{d,p} - \frac{1}{3} G_{E,M}^{s,p}$ form factors: $< n | J_{\mu}^{\gamma} | n >: G_{E,M}^{\gamma,n} = \frac{2}{3} G_{E,M}^{u,n} - \frac{1}{3} G_{E,M}^{d,n} - \frac{1}{3} G_{E,M}^{s,n}$ $: G_{E,M}^{Z,p} = \left(1 - \frac{8}{3} \sin^{2} \theta_{W}\right) G_{E,M}^{u,p} + \left(-1 + \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E,M}^{d,p} + \left(-1 + \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E,M}^{d,p} + \left(-1 + \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E,M}^{d,p}$

Invoke proton/neutron charge symmetry (recent work; Kubis, Lewis PRC 74 (2006) 015204) $\begin{array}{c} u \leftrightarrow d \\ G_{E,M}^{u,p} = G_{E,M}^{d,n} & G_{E,M}^{d,p} = G_{E,M}^{u,n} & G_{E,M}^{s,p} = G_{E,M}^{s,n} \end{array}$

 $\begin{pmatrix} \blacksquare & \exists \text{ equations, 3 unknowns} \\ \begin{pmatrix} G_{E,M}^{\gamma,p}, G_{E,M}^{\gamma,n}, G_{E,M}^{Z,p} \end{pmatrix} \Leftrightarrow \begin{pmatrix} G_{E,M}^{u}, G_{E,M}^{d}, G_{E,M}^{s} \end{pmatrix}$

Parity Violating Elastic e-N Scattering -Probe of Neutral Weak Form Factors

polarized electrons, unpolarized target

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{2\sigma_{unpol}}$$

$$\frac{\gamma}{p} \left| \frac{\gamma}{p} \right|^{2}$$

$$A_{E} = \varepsilon(\theta) G_{E}^{Z}(Q^{2}) G_{E}^{\gamma}(Q^{2}) \qquad \longrightarrow G_{E}^{s}$$

$$A_{M} = \tau(Q^{2}) G_{M}^{Z}(Q^{2}) G_{M}^{\gamma}(Q^{2}) \qquad \longrightarrow G_{M}^{s}$$

$$A_{A} = -(1 - 4\sin^{2}\theta_{W}) \varepsilon' G_{A}^{e}(Q^{2}) G_{M}^{\gamma}(Q^{2}) \qquad \longrightarrow G_{A}^{e}$$

Strange electric and magnetic form factors,

+ axial form factor

At a given Q^2 decomposition of G^s_{E} , G^s_{M} , G^e_{A} requires 3 measurements:

Forward angle $\vec{e} + p$ (elastic) Backward angle $\vec{e} + p$ (elastic) Backward angle $\vec{e} + d$ (quasi-elastic)

General Experimental Requirements

Want to measure $A_{PV} \sim -2$ to -40 ppm with precision $\delta A_{PV} / A_{PV} \sim 5\%$ AND separate G_E^{s} and G_M^{s} Statistics (need 10¹³ - 10¹⁴ events):

- Reliable high polarization, high current polarized electron source
- Large acceptance detector
- High count rate capability detectors/electronics (either run in integrating mode or have highly segmented detector)

Systematics (need to reduce false asymmetries, accurately measure dilution factors):

- Small helicity-correlated beam properties
- Capability to isolate elastic scattering from other processes

Parity-Violating Electron Scattering Program

Expt/Lab	Target/	Q ²	A _{phys}	Sensitivity	Status
	Angle	(GeV ²)	(ppm)		
SAMPLE/Bates	-	X Z			
SAMPLE I	LH ₂ /145	0.1	-6	μ_{s} + 0.4G _A	2000
SAMPLE II	LD ₂ /145	0.1	-8	μ_s + 2G _A	2004
SAMPLE III	LD ₂ /145	0.04	-4	μ_s + 3G _A	2004
HAPPEx/JLab					
HAPPEx	LH ₂ /12.5	0.47	-15	G _E + 0.39G _M	2001
HAPPEx II, III	LH ₂ /6	0.11	-1.6	G _E + 0.1G _M	2006, 2007
HAPPEx He	⁴ He/6	0.11	+6	G _E	2006, 2007
HAPPEx	LH ₂ /14	0.63	-24	G _E + 0.5G _M	(2009)
A4/Mainz					
	LH ₂ /35	0.23	-5	G_{E} + 0.2 G_{M}	2004
	LH ₂ /35	0.11	-1.4	G_{E} + 0.1 G_{M}	2005
	LH ₂ /145	0.23	-17	G_{E} + η G_{M} + η' G_{A}	2009
	LH ₂ /35	0.63	-28	$G_{E} + 0.64G_{M}$	(2009)
G0/JLab					
Forward	LH ₂ /35	0.1 to 1	-1 to -40	G_{E} + η G_{M}	2005
Backward	LH ₂ /LD ₂ /110	0.23, 0.63	-12 to -45	$G_E + \eta G_M + \eta' G_A$	2009

Mainz MAMI microtron

Mainz PV-A4

- θ = 35° , 145°; detects electrons
- Array of PbF₂ crystals for calorimetry
- Custom electronics for high rate histogramming

 $35^{\circ}: Q^{2} = 0.23 \text{ GeV}^{2} \quad A(ep) = -5.44 \pm .54 \pm .26 \text{ ppm} \quad G_{E}^{s} + 0.225 G_{M}^{s} = 0.039 \pm 0.034$ $35^{\circ}: Q^{2} = 0.11 \text{ GeV}^{2} \quad A(ep) = -1.36 \pm .29 \pm .13 \text{ ppm} \quad G_{E}^{s} + 0.106 G_{M}^{s} = 0.071 \pm 0.036$ $145^{\circ}: Q^{2} = 0.22 \text{ GeV}^{2} A(ep) = -17.23 \pm .82 \pm .89 \text{ ppm} \quad 0.26 G_{E}^{s} + G_{M}^{s} = -0.12 \pm 0.16$ Refs: F. Maas, etal, PRL 93 (2004) 022002, F. Maas, et al. PRL 94 (2005) 152001 S. Baunack, etal, PRL 102 (2009) 151803

Published results to date:

 $Q^{2} = 0.48 \,\text{GeV}^{2} \quad \vec{A(ep)} = -15.05 \pm .98 \pm .56 \,\text{ppm} \quad G_{E}^{s} + 0.392 \,G_{M}^{s} = 0.014 \pm 0.020 \pm 0.010$ $Q^{2} = 0.109 \,\text{GeV}^{2} \quad \vec{A(ep)} = -1.58 \pm .12 \pm .04 \,\text{ppm} \quad G_{E}^{s} + 0.090 \,G_{M}^{s} = 0.007 \pm 0.011 \pm .006$ $Q^{2} = 0.077 \,\text{GeV}^{2} \quad \vec{A(e^{-4}He)} = 6.40 \pm .23 \pm .12 \,\text{ppm} \quad G_{E}^{s} = 0.002 \pm 0.014 \pm .007$

Refs: K.A. Aniol, *et al.*, Phys. Rev. C **69**, 065501 (2004) K.A. Aniol, *et al.*, Phys. Rev. Lett **96**, 022003 (2006), PLB 635, 275 (2006) A. Acha, *et al.*, Phys. Rev. Lett **98**, 032301 (2007)

G^o

- Hall C at Jefferson Lab
- dedicated superconducting toroidal magnet
- $\theta_e = 5^\circ 15^\circ$ (forward angle mode); detects recoil protons in scintillator array; time-of-flight

Published results to date:

• forward on proton at 0.12 < Q^2 < 1.0 GeV²

D.S. Armstrong, et al., PRL 95, 092001 (2005)

- backward on proton and deuteron at $Q^2 = 0.22$ and 0.63 1.0 GeV²
- D. Androic, et al., PRL 104, 012001 (2010)

2006: Results of Strange Form Factor Measurements – $Q^2 = 0.1 \text{ GeV}^2$ In 2006, five experiments had been completed at $Q^2 \sim 0.1 \text{ GeV}^2$

 \rightarrow separate extractions of $\ G^{\rm s}{}_{\rm E}$ and $\ G^{\rm s}{}_{\rm M}$

 \rightarrow two global analyses done, with slightly slightly different results depending on

assumptions made about the axial form factor G^{e}_{A}

0.15

QCD lattice predictions at $Q^2 = 0.1 \ GeV^2$: $G_M^s = -0.046 \pm 0.019$ $G_E^s = 0.001 \pm 0.006$ D. Leinweber et al., PRL 94(2005) 212001D. Leinweber et al., PRL 97(2006) 022001

2006: Results of Strange Form Factor Measurements – higher Q^2 In 2006, at higher Q^2 , only forward angle data existed

 \rightarrow only linear combinations of G_{E}^{s} and G_{M}^{s} could be extracted

Note: Considering G^0 data alone the $G^s_E = G^s_M = 0$ hypothesis is ruled out at 89% CL

To obtain separated values of G^s_E and G^s_M at higher Q², backward angle data is needed

2009: Separated form factors at higher Q^2

New backward angle data in 2009 allows for separated form factors at higher Q^2

- MAMI PVA4 backward angle data at $Q^2 = 0.22 \text{ GeV}^2$
- G^0 backward angle data at $Q^2 = 0.22$ and 0.63 GeV²

0.2 Conclusions: 0.1 \blacksquare G⁰ • PVA4 and G data agree at the point of overlap $Q^2 = 0.22 \text{ GeV}^2$ $G_{\rm E}^{\rm S}$ 0.0 • PVA4 ▲ Low Q fit -0.1 • Values are consistent with zero with possible exception of G_F^s at $Q^2 \sim 0.63 \text{ GeV}^2$ • Experimental values are consistent with the 0.6 lattice QCD predictions: 0.4 ∇ Adelaide 0.2 Kentucky Adelaide: Leinweber et al., PRL 94(2005) 212001 G_{M}^{s} 0.0 Leinweber et al., PRL 97(2006) 022001 -0.2 Wang et al., PRC 79(2009) 065202 -0.4 Kentucky: Doi et al., PRD 80 (2009) 094503 0.2 0.0 0.4 0.6 0.8 1.0 1.2 Q^2 (GeV²)

Neutral weak form factors -status in 2010 1.15 electromagnetic G^P_M G^{P}_{E} 1.10 1.5 1. ບັ_ຊ 1.05 , ຊ form factors ້ສ ປີ 1.0 δ 1.00 γ ີ່ ສ 0.95 ປັ చ్^ట 0.5 e Ν 0.90 I 0.85 0.0 $\begin{bmatrix}2&3&4\\GeV^2\end{bmatrix}$ $Q^{2} [GeV^{2}]$ 5 8 2 10 0 1 6 0

The strange quark contributions are generally < 10% of the charge and magnetic nucleon form factors at these Q^2 values.

Strange Form Factor Measurements - upcoming measurements The suggestion of positive non-zero G_E^s at higher Q² is being explored by two forward angle measurements at Q² ~ 0.63 GeV² on the proton

HAPPEx III: data-taking complete in Fall 2009, analysis in progress (see Kent Paschke talk in Session 6A) MAMI PVA4: data-taking in progress

"Spin-off 1": Axial Form Factor Measurements SAMPLE and G⁰ took quasi-elastic data on deuterium at backward angles

First information on Q² dependence of nucleon anapole moment effects

Data analysis in progress by MAMI PVA4 on QE deuterium at $Q^2 \sim 0.22 \text{ GeV}^2$

"Spin-off 2": 2-photon Exchange Effects from Transverse Asymmetries

All four experimental programs have taken data at forward and backward angles on "transverse asymmetries" - parity conserving asymmetry with transversely polarized electrons scattering off unpolarized protons (and deuterons)

 \rightarrow sensitive to the imaginary part of the 2 photon exchange diagram

All results to date are consistent with the need to include π -N intermediate states in the calculations

"Spin-off 3": Input to Standard Model Tests

$$Q_{weak}^{p} = G_{E}^{Z,p} (Q^{2} = 0) = 1 - 4 \sin^{2} \theta_{W}$$

The Q_{weak} experiment at Jefferson Lab will measure the PV asymmetry in e-p elastic scattering at $Q^2 = 0.03 \text{ GeV}^2$ as a test of the Standard Model.

Input from the strange form factor experiments will be used to constrain the hadronic structure contribution.

Q_{weak} is currently being installed in Hall C; data-taking to begin in June 2010

Summary

• Separated values of the vector strange form factors - G_E^s and G_M^s - have been determined at three Q² values - 0.1, 0.22, 0.63 GeV²

• Results are consistent with zero except for G_E^s at high Q^2 - further results will be forthcoming there from HAPPEX-III and MAMI PVA4

• Generally, the strange quark contributions to the charge and magnetic form factors of the nucleon have been shown to be < 10% over this Q^2 range

Related talks this week:

- Session 5C: Peter Blunden " γ -Z exhange corrections in parity-violating electron scattering
- Session 5C: Chung Wen Kao "Two-boson exchange corrections in PVES"
- Session 5E: Wouter Deconinck "The Qweak experiment: a precision search for new physics at the TeV scale"
- Session 5 E: Dustin McNulty "Ultra-precise measurement of the weak mixing angle with an 11 GeV electron beam at Jefferson Lab"
- Session 6A: Takumi Doi "Nucleon Strangeness Form Factors and PDFs"
- Session 6A: Kent Paschke "Strangeness HAPPEX-III"
- Session 6A: Ramesh Subedi "Parity-violating DIS"
- Session 6A: Xiaoyan Deng: "Electron-deuteron PVDIS at Jefferson Lab 6 GeV"
- Session 6A: Diancheng Wang: "eD PVDIS at Jefferson Lab with 6 GeV"

Thanks to: John Arrington, Betsy Beise, Kent Paschke, Ross Young for slide materials